Symbiosis limits establishment of legumes outside their native range at a global scale
نویسندگان
چکیده
Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions.
منابع مشابه
Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales.
UNLABELLED Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global cont...
متن کاملThe Legume-rhizobia Symbiosis under Salt Stress - a Review
Salinity is one of the severe problems in worldwide agricultural production. Soil salinity limits the productions of both forage and grain legumes. Adverse effects of salinity are mediated through detrimental effects on the rhizobium legume interactions that lead to the establishment of the nitrogen fixing symbiosis. Salt stress inhibits the initial steps of the rhizobia legume symbiosis. For i...
متن کاملBiogeographical patterns of legume-nodulating Burkholderia: from African Fynbos to continental scales
45 Rhizobia of the genus Burkholderia have large-scale distribution ranges, and are usually 46 associated with South African papilionoid and South American mimosoid legumes, yet little 47 is known about their genetic structuring at either local or global geographical scales. To 48 understand variation at different spatial scales, from individual legumes in the Fynbos (South 49 Africa) to a glob...
متن کاملInvasive legumes can associate with many mutualists of native legumes, but usually do not
Mutualistic interactions can strongly influence species invasions, as the inability to form successful mutualisms in an exotic range could hamper a host's invasion success. This barrier to invasion may be overcome if an invader either forms novel mutualistic associations or finds and associates with familiar mutualists in the exotic range. Here, we ask (1) does the community of rhizobial mutual...
متن کاملCompatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revea...
متن کامل